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Background Information

� HECToR dCSE project ongoing

� dCSE - dedicated software engineering support to UK 

research community

� Support Imperial-based Turbulence, Mixing and Flow 

Control group, improving a CFD code Incompact3D

� Opportunities identified to develop reusable software 

components for a wider range of applications
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components for a wider range of applications

� Parallel library development

� A general-purpose 2D decomposition library

� For applications based on 3D Cartesian data structures

� A distributed 3-dimensional FFT library

� A distributed FFT-based Poisson solver 



Scientific Applications
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� Flow passing through multi-scale fractal grid

� Energy-efficient way to generate turbulence

� Very fine grid (~billions) required for such simulations



Algorithms and Parallel Solutions

� Incompact3D uses

� Compact Finite Difference method → af'i-1+bf' i+cf'i+1 = RHS

� Pressure Poisson solver → 3D FFT → multiple 1D FFTs

� All values along a global mesh line involved

� General parallel solutions

Parallelise the elementary algorithms
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� Parallelise the elementary algorithms

� Distributed tri-diagonal solver

� Distributed 1D FFT

� Redistribute the data among multiple domain 

decompositions

� Often the preferred method

� Well-developed serial algorithms can be kept unchanged



1D Decomposition

� Two slab decompositions

� Procedure

� (a) operate locally in X, Z

� Transpose to state (b)

(b) operate locally in Y
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� (b) operate locally in Y

� Transpose back to state (a)

� Limitation

� For N^3 mesh, N_proc < N

� Also memory limit

Typical Incompact3D simulation
2048*512*512
N_proc < 512
On HECToR
200,000 time steps at 4 seconds each
25 days wall-clock time
(excluding queueing time)



2D Decomposition

� 2D Decomposition
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� 2D Decomposition

� Also known as pencil or drawer decomposition

� Local operations in one direction at a time

� Transpose

� (a) ⇔ (b) ⇔ (c) ⇔ (b) ⇔ (a)

� Communication among sub-groups only

� Constraint relaxed to N_proc < N^2 for cubic mesh



Why a Library Solution?

� Many applications.

� For a given global data structure and a given domain 

decomposition strategy, the corresponding data 

movement strategy should be identical.

� The implementation is a purely software engineering 
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� The implementation is a purely software engineering 

issue (not relevant to the scientific topics being 

studied).

� The proper implementation is not easy but important 

for performance reason.



Transpose from Y-pencil to Z-pencil

MPI_ALLTOALLV(sendbuf, 

sendcounts, sdispls, sendtype, 

recvbuf, recvcounts, rdispls, 

recvtype, comm)
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� Best buffer gathering / 

scattering strategy?

� Optimisation 

opportunity?



Transpose from X-pencil to Y-pencil

� Top level items appear like this

Second level items appear like this
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� Second level items appear like this

� Third level items appear like this



Decomposition API

� Fortran module

� use decomp_2d

� Global variables

� Starting/ending index and size of the sub-domain held by 

current rank, required to define application data structures

� allocate(in(xsize(1),xsize(2),xsize(3))
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� allocate(in(xsize(1),xsize(2),xsize(3))

� allocate(out(ystart(1):yend(1), 
ystart(2):yend(2), ystart(3):yend(3))

� Public subroutines
� decomp_2d_init(nx,ny,nz,p_row,p_col)

� transpose_x_to_y(in,out); transpose_y_to_z(in,out)  

� transpose_z_to_y(in,out); transpose_y_to_x(in,out)  

� decomp_2d_finalize



Shared-memory Implementation

� ALLTOALL(V) can be very expensive.

� Supercomputers prefers a small number of large messages.

� HECToR  has 8GB memory shared by 4 cores.

� Cores on same node copy data to/from shared buffers.

� Only leaders of the nodes participate in communications.
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� Implemented using System V IPC shared-memory API.

� Transparent to applications (switch on by a compiler flag).

� Originally based on Cray’s code (D. Tanqueray).

� Portable implementation using Ian Bush’s FreeIPC.



Shared-memory Performance
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� Performance improvement for smaller message size 

� Potential on next-generation hardware (24-core HECToR)



Overview of Distributed FFT Libraries

FFT Library Comments

FFTW 2.x MPI interface with 1D decomposition

FFTW 3.x α-version MPI interface
CRAFFT (xt-libsci) Evenly distributed 1D decomposition

Plimpton’s parallel FFT# * Complex-to-complex transforms only

Takahashi’s FFTE # Evenly distributed data; small prime factors
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P3DFFT # Real-to-complex/complex-to-real transforms only

� # based on 2D decomposition

� * user-callable communication routines

� All with some limitations

� Having developed the underlying decomposition library, 

building a distributed FFT library on top is easy



P3DFFT

� P3DFFT

� Open-source software by 

Pekurovsky (SDSC)

� Only r2c/c2r transforms

� Private data 

transposition routines

�

P3DFFT on 
HECToR
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� Application

� Turbulence research 

using spectral DNS code 

by Yeung, et al. 

� Internally using P3DFFT

� Aim to achieve at least 

similar scaling



Distributed FFT API

� Fortran module

� use decomp_2d_fft

� Public subroutines

� decomp_2d_fft_init

� By default, physical space in X-pencil, spectral space in Z-pencil

Optional parameter to use the opposite 
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� Optional parameter to use the opposite 

� decomp_2d_fft_3d  (generic interface)

� (complex in, complex out, direction) complex to complex

� (real in_r, complex out_c) real to complex

� (complex in_c, real out_r) complex to real

� decomp_2d_get_fft_size (allocate memory for c2r/r2c)

� decomp_2d_fft_finalize



Implementing Distributed FFTs

� Complex to complex (c2c) -- easy

� Update decomposition routines to support complex data 

type (Fortran generic interface)

� Real-to-complex (r2c) and complex-to-real (c2r)

� Data storage considering conjugate symmetry

� For nx real input rk, the complex output: ck = ak + ibk
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� For nx real input rk, the complex output: ck = ak + ibk

� (1) also nx real numbers (Hermitian storage)

� (2) nx/2+1 complex numbers – easier to extend to multi-dimension

r1 r2 r3 r4 r5 r6 r7 r8

c1 c2 c3 c4 c5 c6=c4 c7=c3 c8=c2

(1) a1 a2 a3 a4 a5 b4 b3 b2

(2) c1 c2 c3 c4 c5 -- -- --



Extension of Base Communication Library

� Requirement

� FFT real input: nx*ny*nz; complex output: (nx/2+1)*ny*nz

� Both need to be distributed as 2D pencils

� Solution

� Object-oriented style design

Store decomposition information per global size in a 
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� Store decomposition information per global size in a 

Fortran derived data type

� Containing sub-domain sizes; starting/ending indices; Mesh 

distribution and MPI_ALLTOALLV buffer parameters; etc.

� TYPE(DECOMP_INFO) :: decomp

� call decomp_info_init(nx,ny,nz,decomp)

� Optional third parameter to transposition routines

� call transpose_x_to_y(in,out,decomp)



Other Multi-global-size Examples

� Plane-wave electronic 

structure calculations

� Fourier space confined in 

a sphere of diameter d

� Real space in a 2d^3 cube

� Only transpose non-zero 
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� Only transpose non-zero 

data to improve efficiency

� d*d*2d;   d*2d*2d

� CFD application using 

staggered mesh

� Cell-centre variables and 

cell-interface variables 

different global sizes



FFT Engines

� Distributed library performs data management only.

� Actual 1D FFT delegates to a third-party FFT library.

� Multiple third-party libraries supported.

Library Open-
source

Hardware-
tuned

Programming 
experience

Easy parallel 
coding

Generic 

(default)

Y N Slow but no dependency on 

external library 

Y
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(default) external library 

FFTW 3.x Y Auto-tuning Planning hard to use in 

parallel coding

N

ACML N For AMD Limited r2c/c2r API Y

fftpack Y N Slow but used in many 

legacy applications

Y

MKL N For Intel Flawed API design Y

ESSL N For IBM Limited transform lengths N



FFT Library Performance

N^3 Serial FFTW Distributed (FFTW engine)

Planning Execution 16 cores 64 cores 256 cores

64^3 0.359 0.00509 0.00222 - -

128^3 1.98 0.0525 0.0223 0.00576 0.00397

256^3 8.03 0.551 0.179 0.0505 0.0138
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512^3 37.5 5.38 1.74 0.536 0.249

1024^3 - - - 4.59 1.27

2048^3 - - - - 17.9

� Problem size increased by 8.

� Serial FFTW’s execution time increased by ~10.

� Distributed FFT follows serial trend.



FFT Library Scaling
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Distributed Poisson Solver

� Fourier-based matrix decomposition method

� Idea:

� Finite difference discretisation of 3D Poisson results in matrix with 

7 diagonal lines

� Applying FFT in one dimension → 2D pentadiagonal systems

� Applying FFT in a second dimension → 1D tridiagonal systems

FFT in X → FFT in Y → tridiagonal solver in Z → Inverse FFT 
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� FFT in X → FFT in Y → tridiagonal solver in Z → Inverse FFT 

in Y → Inverse FFT in X

� Non-periodic data sets

� Discrete sine/cosine/quarter-wave transforms

� Passed to standard FFT library with pre- & post-processing

� Library code available: FISHPACK, FFTPACK

� Fit in current framework for parallelisation



Distributed Poisson Solver (2)

� Fourier-based spectral method

� Algorithm

� Pre-processing in physical space

� 3D forward FFT

� Pre-processing in spectral space

� Solve Poisson by division of modified wave numbers
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Solve Poisson by division of modified wave numbers

� Post-processing in spectral space

� 3D inverse FFT

� Post-processing in physical space

� Standard 3D FFT in use even with non-periodic data sets

� Pre- and post-processing can be local (done in any pencil 

orientation) or global (data transpositions required)



Poisson Solver Performance

Boundary
Condition

Global
Transpositions

1024^3 case
on 128 cores

2048^3 case 
on 1024 cores

4096^3 case 
on 8192 cores

000 FFT only 4.81 6.26 7.59

100 FFT + 8 7.38 10.38 14.41

010 FFT + 6 6.81 8.86 12.63

110
FFT + 12

8.23 11.56 16.31

111 8.41 11.67 16.48
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FFT + 12
111 8.41 11.67 16.48

� Boundary conditions:

� 0 – periodic

� 1 – homogeneous Neumann (symmetric)

� FFT (forward + inverse) contain 4 global transpositions

� Computationally dominant algorithm even with extra 

communications



Putting all together

� CFD code Incompact3D uses

� Explicit data transpositions for its finite difference part when

� Computing spatial derivatives

� Doing spatial interpolations

� Doing spatial filtering

A modified version of the Poisson solver for pressure 
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� A modified version of the Poisson solver for pressure 

Poisson problem

� Indirectly using the FFT library

� In total up to 66 transposition calls per time step

� An I/O library, also built using the decomposition data 



Incompact3D Strong Scaling on HECToR
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Incompact3D Weak Scaling on HECToR
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4191304 points / MPI rank



Summary

� Highly scalable and user-friendly 2D decomposition 

library and distributed FFT library developed.

� Framework for parallelising other algorithms as long 

as they are

� Based on 3D Cartesian data structures

� Operating on direction by direction basis
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� Operating on direction by direction basis

� Very successful application in Incompact3D

� Source code available upon request

� Email ning.li@nag.co.uk

� Collaboration opportunities?



Questions?
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