
2DECOMP&FFT – A Highly Scalable 2D

Decomposition Library and FFT Interface

Ning Li and Sylvain Laizet

Experts in numerical algorithms

and HPC services

CUG 2010

Edinburgh

24-27 May 2010

Background Information

� HECToR dCSE project ongoing

� dCSE - dedicated software engineering support to UK

research community

� Support Imperial-based Turbulence, Mixing and Flow

Control group, improving a CFD code Incompact3D

� Opportunities identified to develop reusable software

components for a wider range of applications

2

components for a wider range of applications

� Parallel library development

� A general-purpose 2D decomposition library

� For applications based on 3D Cartesian data structures

� A distributed 3-dimensional FFT library

� A distributed FFT-based Poisson solver

Scientific Applications

3

� Flow passing through multi-scale fractal grid

� Energy-efficient way to generate turbulence

� Very fine grid (~billions) required for such simulations

Algorithms and Parallel Solutions

� Incompact3D uses

� Compact Finite Difference method → af'i-1+bf' i+cf'i+1 = RHS

� Pressure Poisson solver → 3D FFT → multiple 1D FFTs

� All values along a global mesh line involved

� General parallel solutions

Parallelise the elementary algorithms

4

� Parallelise the elementary algorithms

� Distributed tri-diagonal solver

� Distributed 1D FFT

� Redistribute the data among multiple domain

decompositions

� Often the preferred method

� Well-developed serial algorithms can be kept unchanged

1D Decomposition

� Two slab decompositions

� Procedure

� (a) operate locally in X, Z

� Transpose to state (b)

(b) operate locally in Y

5

� (b) operate locally in Y

� Transpose back to state (a)

� Limitation

� For N^3 mesh, N_proc < N

� Also memory limit

Typical Incompact3D simulation
2048*512*512
N_proc < 512
On HECToR
200,000 time steps at 4 seconds each
25 days wall-clock time
(excluding queueing time)

2D Decomposition

� 2D Decomposition

6

� 2D Decomposition

� Also known as pencil or drawer decomposition

� Local operations in one direction at a time

� Transpose

� (a) ⇔ (b) ⇔ (c) ⇔ (b) ⇔ (a)

� Communication among sub-groups only

� Constraint relaxed to N_proc < N^2 for cubic mesh

Why a Library Solution?

� Many applications.

� For a given global data structure and a given domain

decomposition strategy, the corresponding data

movement strategy should be identical.

� The implementation is a purely software engineering

7

� The implementation is a purely software engineering

issue (not relevant to the scientific topics being

studied).

� The proper implementation is not easy but important

for performance reason.

Transpose from Y-pencil to Z-pencil

MPI_ALLTOALLV(sendbuf,

sendcounts, sdispls, sendtype,

recvbuf, recvcounts, rdispls,

recvtype, comm)

8

� Best buffer gathering /

scattering strategy?

� Optimisation

opportunity?

Transpose from X-pencil to Y-pencil

� Top level items appear like this

Second level items appear like this

9

� Second level items appear like this

� Third level items appear like this

Decomposition API

� Fortran module

� use decomp_2d

� Global variables

� Starting/ending index and size of the sub-domain held by

current rank, required to define application data structures

� allocate(in(xsize(1),xsize(2),xsize(3))

10

� allocate(in(xsize(1),xsize(2),xsize(3))

� allocate(out(ystart(1):yend(1),
ystart(2):yend(2), ystart(3):yend(3))

� Public subroutines
� decomp_2d_init(nx,ny,nz,p_row,p_col)

� transpose_x_to_y(in,out); transpose_y_to_z(in,out)

� transpose_z_to_y(in,out); transpose_y_to_x(in,out)

� decomp_2d_finalize

Shared-memory Implementation

� ALLTOALL(V) can be very expensive.

� Supercomputers prefers a small number of large messages.

� HECToR has 8GB memory shared by 4 cores.

� Cores on same node copy data to/from shared buffers.

� Only leaders of the nodes participate in communications.

11

� Implemented using System V IPC shared-memory API.

� Transparent to applications (switch on by a compiler flag).

� Originally based on Cray’s code (D. Tanqueray).

� Portable implementation using Ian Bush’s FreeIPC.

Shared-memory Performance

12

� Performance improvement for smaller message size

� Potential on next-generation hardware (24-core HECToR)

Overview of Distributed FFT Libraries

FFT Library Comments

FFTW 2.x MPI interface with 1D decomposition

FFTW 3.x α-version MPI interface
CRAFFT (xt-libsci) Evenly distributed 1D decomposition

Plimpton’s parallel FFT# * Complex-to-complex transforms only

Takahashi’s FFTE # Evenly distributed data; small prime factors

13

P3DFFT # Real-to-complex/complex-to-real transforms only

� # based on 2D decomposition

� * user-callable communication routines

� All with some limitations

� Having developed the underlying decomposition library,

building a distributed FFT library on top is easy

P3DFFT

� P3DFFT

� Open-source software by

Pekurovsky (SDSC)

� Only r2c/c2r transforms

� Private data

transposition routines

�

P3DFFT on
HECToR

14

� Application

� Turbulence research

using spectral DNS code

by Yeung, et al.

� Internally using P3DFFT

� Aim to achieve at least

similar scaling

Distributed FFT API

� Fortran module

� use decomp_2d_fft

� Public subroutines

� decomp_2d_fft_init

� By default, physical space in X-pencil, spectral space in Z-pencil

Optional parameter to use the opposite

15

� Optional parameter to use the opposite

� decomp_2d_fft_3d (generic interface)

� (complex in, complex out, direction) complex to complex

� (real in_r, complex out_c) real to complex

� (complex in_c, real out_r) complex to real

� decomp_2d_get_fft_size (allocate memory for c2r/r2c)

� decomp_2d_fft_finalize

Implementing Distributed FFTs

� Complex to complex (c2c) -- easy

� Update decomposition routines to support complex data

type (Fortran generic interface)

� Real-to-complex (r2c) and complex-to-real (c2r)

� Data storage considering conjugate symmetry

� For nx real input rk, the complex output: ck = ak + ibk

16

� For nx real input rk, the complex output: ck = ak + ibk

� (1) also nx real numbers (Hermitian storage)

� (2) nx/2+1 complex numbers – easier to extend to multi-dimension

r1 r2 r3 r4 r5 r6 r7 r8

c1 c2 c3 c4 c5 c6=c4 c7=c3 c8=c2

(1) a1 a2 a3 a4 a5 b4 b3 b2

(2) c1 c2 c3 c4 c5 -- -- --

Extension of Base Communication Library

� Requirement

� FFT real input: nx*ny*nz; complex output: (nx/2+1)*ny*nz

� Both need to be distributed as 2D pencils

� Solution

� Object-oriented style design

Store decomposition information per global size in a

17

� Store decomposition information per global size in a

Fortran derived data type

� Containing sub-domain sizes; starting/ending indices; Mesh

distribution and MPI_ALLTOALLV buffer parameters; etc.

� TYPE(DECOMP_INFO) :: decomp

� call decomp_info_init(nx,ny,nz,decomp)

� Optional third parameter to transposition routines

� call transpose_x_to_y(in,out,decomp)

Other Multi-global-size Examples

� Plane-wave electronic

structure calculations

� Fourier space confined in

a sphere of diameter d

� Real space in a 2d^3 cube

� Only transpose non-zero

18

� Only transpose non-zero

data to improve efficiency

� d*d*2d; d*2d*2d

� CFD application using

staggered mesh

� Cell-centre variables and

cell-interface variables

different global sizes

FFT Engines

� Distributed library performs data management only.

� Actual 1D FFT delegates to a third-party FFT library.

� Multiple third-party libraries supported.

Library Open-
source

Hardware-
tuned

Programming
experience

Easy parallel
coding

Generic

(default)

Y N Slow but no dependency on

external library

Y

19

(default) external library

FFTW 3.x Y Auto-tuning Planning hard to use in

parallel coding

N

ACML N For AMD Limited r2c/c2r API Y

fftpack Y N Slow but used in many

legacy applications

Y

MKL N For Intel Flawed API design Y

ESSL N For IBM Limited transform lengths N

FFT Library Performance

N^3 Serial FFTW Distributed (FFTW engine)

Planning Execution 16 cores 64 cores 256 cores

64^3 0.359 0.00509 0.00222 - -

128^3 1.98 0.0525 0.0223 0.00576 0.00397

256^3 8.03 0.551 0.179 0.0505 0.0138

20

512^3 37.5 5.38 1.74 0.536 0.249

1024^3 - - - 4.59 1.27

2048^3 - - - - 17.9

� Problem size increased by 8.

� Serial FFTW’s execution time increased by ~10.

� Distributed FFT follows serial trend.

FFT Library Scaling

21

This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725.

Distributed Poisson Solver

� Fourier-based matrix decomposition method

� Idea:

� Finite difference discretisation of 3D Poisson results in matrix with

7 diagonal lines

� Applying FFT in one dimension → 2D pentadiagonal systems

� Applying FFT in a second dimension → 1D tridiagonal systems

FFT in X → FFT in Y → tridiagonal solver in Z → Inverse FFT

22

� FFT in X → FFT in Y → tridiagonal solver in Z → Inverse FFT

in Y → Inverse FFT in X

� Non-periodic data sets

� Discrete sine/cosine/quarter-wave transforms

� Passed to standard FFT library with pre- & post-processing

� Library code available: FISHPACK, FFTPACK

� Fit in current framework for parallelisation

Distributed Poisson Solver (2)

� Fourier-based spectral method

� Algorithm

� Pre-processing in physical space

� 3D forward FFT

� Pre-processing in spectral space

� Solve Poisson by division of modified wave numbers

23

Solve Poisson by division of modified wave numbers

� Post-processing in spectral space

� 3D inverse FFT

� Post-processing in physical space

� Standard 3D FFT in use even with non-periodic data sets

� Pre- and post-processing can be local (done in any pencil

orientation) or global (data transpositions required)

Poisson Solver Performance

Boundary
Condition

Global
Transpositions

1024^3 case
on 128 cores

2048^3 case
on 1024 cores

4096^3 case
on 8192 cores

000 FFT only 4.81 6.26 7.59

100 FFT + 8 7.38 10.38 14.41

010 FFT + 6 6.81 8.86 12.63

110
FFT + 12

8.23 11.56 16.31

111 8.41 11.67 16.48

24

FFT + 12
111 8.41 11.67 16.48

� Boundary conditions:

� 0 – periodic

� 1 – homogeneous Neumann (symmetric)

� FFT (forward + inverse) contain 4 global transpositions

� Computationally dominant algorithm even with extra

communications

Putting all together

� CFD code Incompact3D uses

� Explicit data transpositions for its finite difference part when

� Computing spatial derivatives

� Doing spatial interpolations

� Doing spatial filtering

A modified version of the Poisson solver for pressure

25

� A modified version of the Poisson solver for pressure

Poisson problem

� Indirectly using the FFT library

� In total up to 66 transposition calls per time step

� An I/O library, also built using the decomposition data

Incompact3D Strong Scaling on HECToR

26

Incompact3D Weak Scaling on HECToR

27

4191304 points / MPI rank

Summary

� Highly scalable and user-friendly 2D decomposition

library and distributed FFT library developed.

� Framework for parallelising other algorithms as long

as they are

� Based on 3D Cartesian data structures

� Operating on direction by direction basis

28

� Operating on direction by direction basis

� Very successful application in Incompact3D

� Source code available upon request

� Email ning.li@nag.co.uk

� Collaboration opportunities?

Questions?

29

